985考试网 > 中考 > 频道地图 > 考试试题 > 四川 > 自贡 > 正文

2024年四川自贡中考数学试卷及答案

时间:2024-06-13 19:17:00
来源:985考试网

2024年四川自贡中考数学试卷及答案

第Ⅰ卷  选择题(共48分)

注意事项:必须使用2B铅笔将答案标号填涂在答题卡上对应题目标号的位置上.如需改动,用橡皮擦干净后,再选涂其他答案标号.

一、选择题(共12个小题,每小题4分,共48分.在每题给出的四个选项中,只有一项是符合题目要求的)

1.在0,四个数中,最大的数是(    )

A.              B.0                C.               D.

2.据统计,今年“五一”小长假期间,近70000人次游览了自贡中华彩灯大世界.70000用科学记数法表示为(    )

A.          B.           C.           D.

3.如图,以点A为圆心,适当的长为半径画弧,交两边于点M,N,再分别以M、N为圆心,的长为半径画弧,两弧交于点B,连接.若,则(    )

  

A.              B.             C.              D.

4.下列几何体中,俯视图与主视图形状相同的是(    )

A.        B.        C.        D.

5.学校群文阅读活动中,某学习小组五名同学阅读课外书的本数分别为3,5,7,4,5.这组数据的中位数和众数分别是(    )

A.3,4             B.4,4             C.4,5             D.5,5

6.如图,在平面直角坐标系中,,将绕点O逆时针旋转位置,则点B坐标为(    )

  

A.            B.            C.           D.

7.我国汉代数学家赵爽在他所著《勾股圆方图注》中,运用弦图(如图所示)巧妙地证明了勾股定理.“赵爽弦图”曾作为2002年第24届国际数学家大会的会徽图案.下列关于“赵爽弦图”说法正确的是(    )

A.是轴对称图形                         B.是中心对称图形

C.既是轴对称图形又是中心对称图形       D.既不是轴对称图形也不是中心对称图形

8.关于x的一元二次方程的根的情况是(   )

A.有两个不相等的实数根                 B.有两个相等的实数根

C.只有一个实数根                       D.没有实数根

9.一次函数,二次函数,反比例函数在同一直角坐标系中图象如图所示,则n的取值范围是(    )

A.            B.            C.         D.

10.如图,在中,.A点P从点A出发、以的速度沿运动,同时点Q从点C出发,以的速度沿往复运动,当点P到达端点D时,点Q随之停止运动.在此运动过程中,线段出现的次数是(    )

A.3                B.4                C.5                D.6

11.如图,等边钢架的立柱于点D,.现将钢架立柱缩短成.则新钢架减少用钢(    )

A.     B.      C.      D.

12.如图,在矩形中,平分,将矩形沿直线折叠,使点A,B分别落在边上的点处,分别交于点G,H.若,则的长为(    )

A.           B.           C.             D.5

第Ⅱ卷(非选择题  共102分)

注意事项:必须使用0.5毫米黑色墨水签字笔在答题卡上题目所指示区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫来黑色墨水签字笔描清楚,答在试题卷上无效.

二、填空题(共6个小题,每小题4分,共24分)

13.分解因式:            .

14.计算:        .

15.凸七边形的内角和是        度.

16.一次函数的值随的增大而增大,请写出一个满足条件的的值        .

17.龚扇是自贡“小三绝”之一.为弘扬民族传统文化,某校手工兴趣小组将一个废弃的大纸杯侧面剪开直接当作扇面,制作了一个龚扇模型(如图).扇形外侧两竹条夹角为,扇面的边长为,则扇面面积为        (结果保留

18.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙于点O(如图),其中上的段围墙空缺.同学们测得m,m,m,m,m.班长买来可切断的围栏m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是       

三、解答题(共8个题,共78分)

19.计算:

20.如图,在中,

(1)求证:

(2)若平分,请直接写出的形状.

21.为传承我国传统节日文化,端午节前夕,某校组织了包粽子活动.已知七(3)班甲组同学平均每小时比乙组多包20个粽子,甲组包150个粽子所用的时间与乙组包120个粽子所用的时间相同.求甲,乙两组同学平均每小时各包多少个粽子.

22.在中,的内切圆,切点分别为D,E,F.

图1                图2

(1)图1中三组相等的线段分别是________,________;若,则半径长为________;

(2)如图2,延长到点M,使,过点M作于点N.

求证:的切线.

23.某校为了解学生身体健康状况,从全校600名学生的体质健康测试结果登记表中,随机选取了部分学生的测试数据进行初步整理(如图1).并绘制出不完整的条形统计图(如图2).

成绩

频数

百分比

不及格

3

a

及格

b

良好

45

c

优秀

32

图1  学生体质健康统计表

图2  学生体质健康条形图

(1)图1中________,________,________;

(2)请补全图2的条形统计图,并估计该校学生体质健康测试结果为“良好”和“优秀”的总人数;

(3)为听取测试建议,学校选出了3名“良好”1名“优秀”学生,再从这4名学生中随机抽取2人参加学校体质健康测试交流会.请用列表或画树状图的方法,计算所抽取的两人均为“良好”的概率

24.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于两点.

(1)求反比例函数和一次函数的解析式;

(2)P是直线上的一个动点,的面积为21,求点P坐标;

(3)点Q在反比例函数位于第四象限的图象上,的面积为21,请直接写出Q点坐标.

25.为测量水平操场上旗杆的高度,九(2)班各学习小组运用了多种测量方法.

        

(1)如图1,小张在测量时发现,自己在操场上的影长恰好等于自己的身高.此时,小组同学测得旗杆的影长,据此可得旗杆高度为________m;

(2)如图2,小李站在操场上E点处,前面水平放置镜面C,并通过镜面观测到旗杆顶部A.小组同学测得小李的眼睛距地面高度,小李到镜面距离,镜面到旗杆的距离.求旗杆高度;

(3)小王所在小组采用图3的方法测量,结果误差较大.在更新测量工具,优化测量方法后,测量精度明显提高,研学旅行时,他们利用自制工具,成功测量了江姐故里广场雕塑的高度.方法如下:

        

如图4,在透明的塑料软管内注入适量的水,利用连通器原理,保持管内水面M,N两点始终处于同一水平线上.

如图5,在支架上端P处,用细线系小重物Q,标高线始终垂直于水平地面.

如图6,在江姐故里广场上E点处,同学们用注水管确定与雕塑底部B处于同一水平线的D,G两点,并标记观测视线与标高线交点C,测得标高.将观测点D后移处,采用同样方法,测得.求雕塑高度(结果精确到).

26.如图,抛物线与x轴交于两点,顶点为P.

(1)求抛物线的解析式及P点坐标;

(2)抛物线交y轴于点C,经过点A,B,C的圆与y轴的另一个交点为D,求线段的长;

(3)过点P的直线分别与抛物线、直线交于x轴下方的点M,N,直线交抛物线对称轴于点E,点P关于E的对称点为Q,轴于点H.请判断点H与直线的位置关系,并证明你的结论

参考答案

1.C

2.B

3.A

4.C

5.D

6.A

7.B

8.A

9.C

10.B

11.D

12.A

13.

14.1

15.900

16.(答案不唯一)

17.

18.

19.

20.

(1)证明:∵

(2)

是等腰直角三角形

21.甲组平均每小时包100个粽子,乙组平均每小时包80个粽子.

22.

(1);1

(2)

证明:连接,作于点

半径为

的内切圆,切点分别为D,E,F,

同理

的切线.

23.

(1);20;

(2)补全图见解析,估计该校学生体质健康测试结果为“良好”和“优秀”的总人数为462人;

解:补全条形统计图,如图:

(人),

估计该校学生体质健康测试结果为“良好”和“优秀”的总人数为462人;

(3)选取的2名学生均为“良好”的概率为

24.(1)

(2)点P坐标为

(3)Q点坐标为

25.(1)

(2)旗杆高度为

(3)雕塑高度为

26.

(1)

(2)4

(3)点H在直线